Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 106: 115-126, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995237

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Ansiedade , Arginina Vasopressina , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Clostridiales , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Ocitocina , RNA Mensageiro/metabolismo
2.
Eur Neuropsychopharmacol ; 41: 152-159, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191074

RESUMO

The gut microbiota modulates brain physiology, development, and behavior and has been implicated as a key regulator in several central nervous system disorders. Its effect on the metabolic coupling between neurons and astrocytes has not been studied to date, even though this is an important component of brain energy metabolism and physiology and it is perturbed in neurodegenerative and cognitive disorders. In this study, we have investigated the mRNA expression of 6 genes encoding proteins implicated in the astrocyte-neuron lactate shuttle (Atp1a2, Ldha, Ldhb, Mct1, Gys1, Pfkfb3), in relation to different gut microbiota manipulations, in the mouse brain hippocampus, a region with critical functions in cognition and behavior. We have discovered that Atp1a2 and Pfkfb3, encoding the ATPase, Na+/K+ transporting, alpha 2 sub-unit, respectively and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, two genes predominantly expressed in astrocytes, were upregulated in the hippocampus after microbial colonization of germ-free mice for 24 h, compared with conventionally raised mice. Pfkfb3 was also upregulated in germ-free mice compared with conventionally raised mice, while an increase in Atp1a2 expression in germ-free mice was confirmed only at the protein level by Western blot. In a separate cohort of mice, Atp1a2 and Pfkfb3 mRNA expression was upregulated in the hippocampus following 6-week dietary supplementation with prebiotics (fructo- and galacto-oligosaccharides) in an animal model of chronic psychosocial stress. To our knowledge, these findings are the first to report an influence of the gut microbiota and prebiotics on mRNA expression of genes implicated in the metabolic coupling between neurons and astrocytes.


Assuntos
Astrócitos/metabolismo , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes/fisiologia , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo , Animais , Metabolismo Energético/fisiologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/administração & dosagem
3.
Science ; 366(6465)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672864

RESUMO

Sociability can facilitate mutually beneficial outcomes such as division of labor, cooperative care, and increased immunity, but sociability can also promote negative outcomes, including aggression and coercion. Accumulating evidence suggests that symbiotic microorganisms, specifically the microbiota that reside within the gastrointestinal system, may influence neurodevelopment and programming of social behaviors across diverse animal species. This relationship between host and microbes hints that host-microbiota interactions may have influenced the evolution of social behaviors. Indeed, the gastrointestinal microbiota is used by certain species as a means to facilitate communication among conspecifics. Further understanding of how microbiota influence the brain in nature may be helpful for elucidating the causal mechanisms underlying sociability and for generating new therapeutic strategies for social disorders in humans, such as autism spectrum disorders (ASDs).


Assuntos
Encéfalo/fisiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Comportamento Social , Animais , Bactérias/metabolismo , Dieta , Humanos , Sistema Imunitário/fisiologia , Relações Interpessoais , Probióticos/uso terapêutico , Olfato , Transtornos do Comportamento Social/microbiologia , Transtornos do Comportamento Social/terapia , Estresse Psicológico , Nervo Vago/fisiologia
4.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31460832

RESUMO

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Assuntos
Bactérias/metabolismo , Encefalopatias/microbiologia , Encéfalo/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Fatores Etários , Envelhecimento , Animais , Bactérias/imunologia , Bactérias/patogenicidade , Comportamento , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Encefalopatias/psicologia , Disbiose , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Intestinos/imunologia , Neuroimunomodulação , Plasticidade Neuronal , Fatores de Risco
5.
Ann N Y Acad Sci ; 1420(1): 5-25, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28768369

RESUMO

There is a growing appreciation of the role of the gut microbiota in all aspects of health and disease, including brain health. Indeed, roles for the bacterial commensals in various psychiatric and neurological conditions, such as depression, autism, stroke, Parkinson's disease, and Alzheimer's disease, are emerging. Microbiota dysregulation has been documented in all of these conditions or in animal models thereof. Moreover, depletion or modulation of the gut microbiota can affect the severity of the central pathology or behavioral deficits observed in a variety of brain disorders. However, the mechanisms underlying such effects are only slowly being unraveled. Additionally, recent preclinical and clinical evidence suggest that targeting the microbiota through prebiotic, probiotic, or dietary interventions may be an effective "psychobiotic" strategy for treating symptoms in mood, neurodevelopmental disorders, and neurodegenerative diseases.


Assuntos
Encéfalo/patologia , Disbiose/patologia , Microbioma Gastrointestinal/fisiologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/patologia , Envelhecimento , Humanos , Doenças Neurodegenerativas/dietoterapia , Transtornos do Neurodesenvolvimento/dietoterapia , Prebióticos , Probióticos/uso terapêutico
6.
Int J Neuropsychopharmacol ; 20(10): 833-843, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977524

RESUMO

Background: To determine brain areas involved in the antidepressant-related behavioral effects of the selective neuronal nitric oxide synthase inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) and experimental test compound 4-((3,5-dichloro-2-hydroxybenzyl)amino)-2-hydroxybenzoic acid (ZL006), an inhibitor of the PSD of 95 kDa/neuronal nitric oxide synthase interaction in the N-methyl-D-aspartic acid receptor signalling pathway, regional specific expression of the neuronal activation marker c-FOS was assessed following exposure to the forced swimming test in the Wistar Kyoto rat. Methods: Wistar Kyoto rats were subjected to a 15-minute swim pretest (pre-forced swimming test) period on day 1. At 24, 5, and 1 hour prior to the 5-minute test, which took place 24 hours following the pre-forced swimming test, animals were treated with TRIM (50 mg/kg; i.p.), ZL006 (10 mg/kg; i.p.), or saline vehicle (1 mL/kg i.p). Behavior was recorded during both pretest and test periods. Results: Both TRIM and ZL006 decreased immobility time in Wistar Kyoto rats in the forced swimming test. Exposure to the forced swimming test increased c-FOS immunoreactivity in the lateral septum, paraventricular nucleus of the hypothalamus, periaqueductal grey, dentate gyrus, and ventral CA1 of the hippocampus compared with non-forced swimming test-exposed controls. Forced swimming test-induced c-FOS immunoreactivity was further increased in the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus following treatment with TRIM or ZL006. By contrast, forced swimming test-induced c-FOS immunoreactivity was reduced in dorsal dentate gyrus and ventral CA1 following treatment with TRIM or ZL006. Exposure to the forced swimming test resulted in an increase in NADPH diaphorase staining in the paraventricular nucleus of the hypothalamus. This forced swimming test-induced increase was attenuated following treatment with ZL006 and points to the paraventricular nucleus as a brain region where ZL006 acts to attenuate forced swimming test-induced neuronal nitric oxide synthase activity while concomitantly regulating region specific neuronal activation associated with an antidepressant-related response. Conclusions: This study identified a pattern of enhanced and reduced forced swimming test-related c-FOS immunoreactivity indicative of a regulated network where inhibition of nitric oxide coupled to the N-methyl-D-aspartic acid receptor leads to activation of the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus with concomitant inhibition of the hippocampus.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Antidepressivos/farmacologia , Benzilaminas/farmacologia , Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Proteína 4 Homóloga a Disks-Large/metabolismo , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , NADPH Desidrogenase/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Endogâmicos WKY , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
7.
EBioMedicine ; 24: 166-178, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28965876

RESUMO

Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut - namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.


Assuntos
Transtorno do Espectro Autista/complicações , Bactérias/classificação , Ácidos e Sais Biliares/metabolismo , Gastroenteropatias/microbiologia , Triptofano/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Bactérias/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Modelos Animais de Doenças , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos , Microbiota
8.
Behav Brain Res ; 316: 18-28, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569181

RESUMO

OBJECTIVE: The regional specific modulation of neuronal activation following drug administration is of interest to determine brain areas involved in the behavioural effects of experimental test compounds. In the current investigation the effects of the L-arginine related NOS inhibitor Nω-l-nitroarginine (L-NA) and the structurally unrelated selective neuronal NOS inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) were assessed in the rat for changes in regional c-FOS immunoreactivity, a marker of neuronal activation, upon exposure to the forced swimming test (FST). Behaviour and regional FOS and FosB/ΔFosB expression was assessed in naive animals and in animals exposed to stress with central serotonin-depletion which exhibit a stress related phenotype in the FST. METHODS: Male Sprague-Dawley rats (n=5- 6 per group) were treated with the irreversible tryptophan hydroxylase inhibitor, DL-4-p-chlorophenylalanine (pCPA, 150mg/kg, i.p.), to achieve central serotonin-depletion followed by repeated exposures to restraint stress and were then subjected to the FST. 24, 5 and 1h prior to the test, animals were treated with either L-NA (10mg/kg, i.p.), TRIM (50mg/kg, i.p.) or saline vehicle (1mg/kg i.p). RESULTS: pCPA treatment coupled with restraint stress increased immobility in the FST compared to naïve controls. Both NOS inhibitors decreased immobility time in 5-HT depleted and stressed animals only in keeping with their antidepressant-like properties. Brain regions analyzed for c-FOS immunoreactivity included the pre-limbic cortex, lateral septum (LS), nucleus accumbens, paraventricular hypothalamic nucleus (PVN), central amygdala, hippocampus (dorsal dentate gyrus and ventral CA1), and the dorsal raphe nucleus (DRN). Exposure to the FST increased c-FOS immunoreactivity in the LS, PVN, dentate gyrus, vCA1 and the DRN when compared to non-FST exposed controls. FST-induced c-FOS immunoreactivity was further increased in the LS following treatment with L-NA or TRIM when compared to vehicle-treated FST controls. By contrast, FST-induced c-FOS immunoreactivity was reduced in dorsal dentate gyrus, vCA1 and the DRN following treatment with L-NA or TRIM when compared to vehicle-treated FST controls. There was no difference observed in FST-induced expression of c-FOS between naïve animals and animals exposed to pCPA and restraint stress. This combination however provoked an increase in FosB/ΔFosB immunoreactivity in the infra-limbic cortex and nucleus accumbens with a concomitant reduction in the lateral septum, suggesting alterations to long-term, adaptive neuronal activation. CONCLUSION: This study identified a pattern of enhanced and reduced FST-related c-FOS immunoreactivity indicative of a NO-regulated network where inhibition of NO leads to activation of the septum with concomitant inhibition of the hippocampus, and the DRN. No link between FST-induced regional expression of c-FOS and increased immobility in the FST was observed in animals exposed to pCPA and stress. However, the 5-HT depletion regime combined with restraint stress provoked regional changes in the expression of ΔFosB which may relate to increased immobility in the FST.


Assuntos
Depressão/tratamento farmacológico , Depressão/patologia , Inibidores Enzimáticos/uso terapêutico , Nitroarginina/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Contagem de Células , Depressão/etiologia , Modelos Animais de Doenças , Leucina/análogos & derivados , Leucina/uso terapêutico , Masculino , Ácidos Polimetacrílicos/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Serotonina/metabolismo , Estatísticas não Paramétricas , Natação/psicologia
9.
Transl Res ; 179: 223-244, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832936

RESUMO

The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.


Assuntos
Encéfalo/metabolismo , Dieta , Trato Gastrointestinal/metabolismo , Microbiota , Neuropsiquiatria , Fatores Etários , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos
10.
CNS Drugs ; 30(11): 1019-1041, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417321

RESUMO

The role of the gut microbiota in health and disease is becoming increasingly recognized. The microbiota-gut-brain axis is a bi-directional pathway between the brain and the gastrointestinal system. The bacterial commensals in our gut can signal to the brain through a variety of mechanisms, which are slowly being resolved. These include the vagus nerve, immune mediators and microbial metabolites, which influence central processes such as neurotransmission and behaviour. Dysregulation in the composition of the gut microbiota has been identified in several neuropsychiatric disorders, such as autism, schizophrenia and depression. Moreover, preclinical studies suggest that they may be the driving force behind the behavioural abnormalities observed in these conditions. Understanding how bacterial commensals are involved in regulating brain function may lead to novel strategies for development of microbiota-based therapies for these neuropsychiatric disorders.


Assuntos
Encéfalo/microbiologia , Encéfalo/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Humanos , Transtornos Mentais/microbiologia , Transtornos Mentais/psicologia , Neuropsiquiatria/métodos
11.
Curr Opin Gastroenterol ; 32(2): 96-102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26760398

RESUMO

PURPOSE OF REVIEW: There is an increasing realization that the microorganisms which reside within our gut form part of a complex multidirectional communication network with the brain known as the microbiome-gut-brain axis. In this review, we focus on recent findings which support a role for this axis in modulating neurodevelopment and behavior. RECENT FINDINGS: A growing body of research is uncovering that under homeostatic conditions and in response to internal and external stressors, the bacterial commensals of our gut can signal to the brain through a variety of mechanisms to influence processes such neurotransmission, neurogenesis, microglia activation, and modulate behavior. Moreover, the mechanisms underlying the ability of stress to modulate the microbiota and also for microbiota to change the set point for stress sensitivity are being unraveled. Dysregulation of the gut microbiota composition has been identified in a number of psychiatric disorders, including depression. This has led to the concept of bacteria that have a beneficial effect upon behavior and mood (psychobiotics) being proposed for potential therapeutic interventions. SUMMARY: Understanding the mechanisms by which the bacterial commensals of our gut are involved in brain function may lead to the development of novel microbiome-based therapies for these mood and behavioral disorders.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/fisiopatologia , Transtornos Mentais/etiologia , Vias Neurais/fisiopatologia , Estresse Psicológico/fisiopatologia , Ansiedade/etiologia , Depressão/etiologia , Sistema Nervoso Entérico/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Transtornos Mentais/imunologia , Transtornos Mentais/fisiopatologia , Vias Neurais/imunologia , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Estresse Psicológico/complicações , Nervo Vago/fisiopatologia
12.
Brain Behav Immun ; 48: 274-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900439

RESUMO

Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1ß and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-ß injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-ß response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function.


Assuntos
Encéfalo/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interleucina-6/metabolismo , Poli I-C/farmacologia , Animais , Encéfalo/metabolismo , Comportamento de Doença/fisiologia , Imunidade Inata/fisiologia , Interleucina-1beta/metabolismo , Cinurenina/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Circulation ; 130(23): 2040-51, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25359166

RESUMO

BACKGROUND: Aryl hydrocarbon receptor (AhR) is a transcription factor that belongs to the basic helix-loop-helix PAS (Per-Arnt-Sim homology domain) family known to mediate the toxic and carcinogenic effects of xenobiotics. Interestingly, AhR is widely expressed in the central nervous system, but its physiological and pathological roles are still unclear. METHODS AND RESULTS: To define the role of AhR in stroke, we used middle cerebral artery occlusion in mice and oxygen-glucose deprivation in rat cortical neurons. The results presented here show that the ischemic insult increases total and nuclear AhR levels and AhR transcriptional activity in neurons in vivo and in vitro. We also show that AhR has a causal role in acute ischemic damage because pharmacological or genetic loss-of-function approaches result in neuroprotection. Inhibition of cAMP response element-binding protein-dependent signaling may participate in the deleterious actions of AhR. Finally, we have also found that L-kynurenine, a tryptophan metabolite with AhR agonistic properties, is an endogenous ligand that mediates AhR activation in the brain after middle cerebral artery occlusion. CONCLUSIONS: Our data demonstrate that an L-kynurenine/AhR pathway mediates acute brain damage after stroke and open new possibilities for the diagnosis and treatment of this pathology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Cinurenina/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Flavonas/farmacologia , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Cultura Primária de Células , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...